Email updates

Keep up to date with the latest news and content from Molecular Neurodegeneration and BioMed Central.

Open Access Research article

Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity

Pedro J Chacon, Rosa Garcia-Mejias and Alfredo Rodriguez-Tebar*

Author Affiliations

Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Americo Vespucio s/n, Isla de la Cartuja, 41092 Seville, Spain

For all author emails, please log on.

Molecular Neurodegeneration 2011, 6:14  doi:10.1186/1750-1326-6-14

Published: 4 February 2011

Abstract

Background

Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ.

Results

We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons.

Conclusion

Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease.