Email updates

Keep up to date with the latest news and content from Molecular Neurodegeneration and BioMed Central.

Open Access Open Badges Research article

A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

Joy X Lei1, Cristina G Cassone1, Christian Luebbert1 and Qing Yan Liu12*

Author Affiliations

1 Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada

2 Faculty of Medicine, University of Ottawa, Ottawa, Canada

For all author emails, please log on.

Molecular Neurodegeneration 2011, 6:9  doi:10.1186/1750-1326-6-9

Published: 21 January 2011



Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD). To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD) patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration.


QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD), though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death caused DNAJB4, suggesting that the binding of SDIM1 to DNAJB4 might sequester DNAJB4, thus increasing cell viability.


Taken together, we have identified a small membrane protein, which is down regulated in AD brains and neuronal cells exposed to injurious insults. Its ability to promote survival and its interaction with DNAJB4 suggest that it may play a very specific role in brain cell survival and/or receptor trafficking.