Email updates

Keep up to date with the latest news and content from Molecular Neurodegeneration and BioMed Central.

Open Access Open Badges Research article

Differential regulation of BACE1 expression by oxidative and nitrosative signals

Young-Don Kwak1, Ruishan Wang1, Jing Jing Li1, Yun-Wu Zhang2, Huaxi Xu3 and Francesca-Fang Liao1*

Author Affiliations

1 Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, 874 Union Avenue, Memphis TN, 38163, USA

2 Institute for Biomedical Research and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361005, China

3 Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10190 North Torrey Pines Road, La Jolla, CA 92037, USA

For all author emails, please log on.

Molecular Neurodegeneration 2011, 6:17  doi:10.1186/1750-1326-6-17

Published: 3 March 2011



It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD). Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO), in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides.


Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H2O2-mediated oxidation. We found that NO and H2O2 differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (<100 nM) suppresses BACE1 transcription as well as its enzymatic activity while at higher levels (0.1-100 μM) NO induces S-nitrosylation of BACE1 which inactivates the enzyme without altering its expression. Moreover, the suppressive effect on BACE1 transcription is mediated by the NO/cGMP-PKG signaling, likely through activated PGC-1α. H2O2 (1-10 μM) induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H2O2 on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains.


This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H2O2-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H2O2 and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.